Quiz 5: Differentiation Rules

Problem 1 (5 points). Differentiate the function $f(x)=\sqrt{e^{-x}+2}$.
Solution: Apply the power rule and the chain rule (twice):

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2}\left(e^{-x}+2\right)^{-1 / 2} \frac{d}{d x}\left(e^{-x}+2\right) \\
& =\frac{e^{-x} \frac{d}{d x}(-x)}{2 \sqrt{e^{-x}+2}} \\
& =\frac{-1}{2 e^{x} \sqrt{e^{-x}+2}} .
\end{aligned}
$$

Problem $2\left(1+1+3=5\right.$ points). Consider the function $y=x^{10}+\sin (x)$. Find each of the following.
(a) $\frac{d y}{d x}=10 x^{9}+\cos (x)$
(b) $\frac{d^{2} y}{d x^{2}}=90 x^{8}-\sin (x)$
(c) $\frac{d^{99} y}{d x^{99}}=-\cos (x)$

Problem 3 (5 points). Find values of a and b that make the below function differentiable at $t=0$.

$$
f(t)= \begin{cases}t e^{t}+3 \tan t & \text { for } t \leq 0 \\ \frac{a t+b}{t+1} & \text { for } t>0\end{cases}
$$

Solution: First, we need $b=0$ in order for the function to be continuous:

$$
\begin{aligned}
\lim _{t \rightarrow 0^{+}} f(t) & =b \\
f(0) & =0 e^{0}+3 \tan 0=0 .
\end{aligned}
$$

We also need the derivatives of the two pieces to match up at $t=0$.

$$
\begin{aligned}
\frac{d}{d t}\left(t e^{t}+3 \tan t\right) & =t e^{t}+e^{t}+3 \sec ^{2}(t) \\
\frac{d}{d t}\left(\frac{a t}{t+1}\right) & =\frac{a(t+1)-a t}{(t+1)^{2}} \\
& =\frac{a}{(t+1)^{2}}
\end{aligned}
$$

Equating these at $t=0$ gives the condition

$$
\begin{aligned}
0 e^{0}+e^{0}+3 \sec ^{2}(0) & =\frac{a}{1^{2}} \\
4 & =a
\end{aligned}
$$

so $a=4$ and $b=0$.

